Boundary gradient target in parabolic systems
نویسندگان
چکیده
The aim of this paper is to point out some new results on regional boundary gradient controllability for parabolic systems. First, we give a definition and some properties of this concept, then we concentrate on the determination of the control achieving regional boundary gradient target with minimum energy and we develop an approach that leads to numerical algorithm for the computation of the optimal control.
منابع مشابه
Effect of Thermal Gradient on Vibration of Non-Homogeneous Square Plate with Exponentially Varying Thickness
Vibrations of plate and plate type structures made up of composite materials have a significant role in various industrial mechanical structures, aerospace industries and other engineering applications. The main aim of the present paper is to study the two dimensional thermal effect on the vibration of non-homogeneous square plate of variable thickness having clamped boundary. It is assumed tha...
متن کاملSolvability Problem for Strong-nonlinear Nondiagonal Parabolic System
A class of q-nonlinear parabolic systems with a nondiagonal principal matrix and strong nonlinearities in the gradient is considered.We discuss the global in time solvability results of the classical initial boundary value problems in the case of two spatial variables. The systems with nonlinearities q ∈ (1, 2), q = 2, q > 2, are analyzed.
متن کاملGlobal gradient estimates for degenerate parabolic equations in nonsmooth domains
Abstract. This paper studies the global regularity theory for degenerate nonlinear parabolic partial differential equations. Our objective is to show that weak solutions belong to a higher Sobolev space than assumed a priori if the complement of the domain satisfies a capacity density condition and if the boundary values are sufficiently smooth. Moreover, we derive integrability estimates for t...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملWell-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows
We develop a gradient-flow framework based on the Wasserstein metric for a parabolic moving-boundary problem that models crystal dissolution and precipitation. In doing so we derive a new weak formulation for this moving-boundary problem and we show that this formulation is well-posed. In addition, we develop a new uniqueness technique based on the framework of gradient flows with respect to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000